Tractable approximate robust geometric programming
نویسندگان
چکیده
The optimal solution of a geometric program (GP) can be sensitive to variations in the problem data. Robust geometric programming can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a GP and optimizing for the worst-case scenario under this model. However, it is not known whether a general robust GP can be reformulated as a tractable optimization problem that interior-point or other algorithms can efficiently solve. In this paper we propose an approximation method that seeks a compromise between solution accuracy and computational efficiency. The method is based on approximating the robust GP as a robust linear program (LP), by replacing each nonlinear constraint function with a piecewise-linear (PWL) convex approximation. With a polyhedral or ellipsoidal description of the uncertain data, the resulting robust LP can be formulated as a standard convex optimization problem that interior-point methods can solve. The drawback of this basic method is that the number of terms in the PWL approximations required to obtain an acceptable approximation error can be very large. To overcome the “curse of dimensionality” that arises in directly approximating the nonlinear constraint functions in the original robust GP, we form a conservative approximation of the original robust GP, which contains only bivariate constraint functions. We show how to find globally optimal PWL approximations of these bivariate constraint functions. K.-L. Hsiung ( ) · S.-J. Kim · S. Boyd Information Systems Laboratory, Electrical Engineering Department, Stanford University, Stanford, CA 94305-9510, USA e-mail: [email protected] S.-J. Kim e-mail: [email protected] S. Boyd e-mail: [email protected] 96 K.-L. Hsiung et al.
منابع مشابه
Event-driven and Attribute-driven Robustness
Over five decades have passed since the first wave of robust optimization studies conducted by Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept aside; there is much more potential for investigating the exact nature of uncertainties to obtain intelligent robust models. For this purpose, in this study, we investigate a more refined description...
متن کاملRobust Geometric Programming Approach to Profit Maximization with Interval Uncertainty
Profit maximization is an important issue to the firms that pursue the largest economic profit possible. In this paper, we consider the profit-maximization problem with the known CobbDouglas production function. Its equivalent geometric programming form is given. Then due to the presence of uncertainties in real world modeling, we have assumed interval uncertainties on the model parameters. The...
متن کاملA robust aggregation operator for multi-criteria decision-making method with bipolar fuzzy soft environment
Molodtsov initiated soft set theory that provided a general mathematicalframework for handling with uncertainties in which we encounter the data by affix parameterized factor during the information analysis as differentiated to fuzzy as well as bipolar fuzzy set theory.The main object of this paper is to lay a foundation for providing a new application of bipolar fuzzy soft tool in ...
متن کاملPrimal and dual linear decision rules in stochastic and robust optimization
Linear stochastic programming provides a flexible toolbox for analyzing reallife decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modeled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the space...
متن کاملA Geometric Characterization of the Power of Finite Adaptability in Multistage Stochastic and Adaptive Optimization
In this paper, we show a significant role that geometric properties of uncertainty sets, such as symmetry, play in determining the power of robust and finitely adaptable solutions in multistage stochastic and adaptive optimization problems. We consider a fairly general class of multistage mixed integer stochastic and adaptive optimization problems and propose a good approximate solution policy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005